
1. Non-interactive time-based proof
of stake finality
Giovanni Antino, Iris Dimni per AiliA SA

1.1 Requirements
The protocol must have be linear. Lets suppose that 100 nodes have to coordinate their state,
they must do so with the smallest number of messages being sent, in the best case scenario, one
per node. Each node must decide independently to accept or refuse a transaction. Control of the
network must be distributed as much as possible.

Tolerance to the actions of malevolent actors must reach up to 50%+1 of the total stake so as to
approximate the security levels reached by "Proof of Work" algorithms.

1.2 Actors involved
An actor is a person, organization, or external system that plays a role in one or more interactions
in the system.

1.2.1 Mining Nodes
The servers making up the blockchain network are called mining nodes. They are responsible for
voting on smart contracts, assigning rewards, selecting, validating and including the transactions
into blocks, thus creating the blocks that make up the blockchain.

1.2.2 Replicate Nodes
These are servers that help propagate transactions, while keeping a complete copy of the blockchain.
They validate blocks and transactions they receive and spread them to the rest of the network
but do not create blocks themselves.

1.2.3 Holder
Token owners, tokens are needed to operate on the chain.

1

2 CHAPTER 1.

1.2.4 Stake Holder
Address of the tokens owned, necessary to elect a reply node in a mining node. In our case the
TKG.

1.2.5 Green Token - TKG
Tokens necessary for control of the blockchain and usage, similarly to Cardano’s Ada they allow:

• Payment of the transactions gas, meaning the fee necessary to conduct a transaction or
execute a smart contract.

• Staking on nodes of the network.

It constitutes the main token of the blockchain and is absolutely necessary to make it work. It is
created as a result of mining in each block.

1.2.6 Red Token - TKR
Token used for payment. They can be used interchangeably with the TKG to pay the execution
cost of transactions or smart contracts. When the calling address owns a balance of both TKR
and TKG the TKR are used first, until the address’s balance is emptied, then the TKG are
used.

All TKR are declared in the zero block of the chain using a reserved transaction that can be
used exclusively in the same block and is considered invalid afterwards. Owning these tokens does
not enable to staking, thus owning them does not confer any kind of control on the blockchain.
This Proof of Stake algorithm offers a strong incentive to not use the control tokens, TKG, to
make payments. The introduction of the TKR is one of the solutions to this problem, being an
alternative offered to incentivise making use the blockchain while not handing out the control
tokens. If this alternative was not present, in those block-chains with an intensive usage the
artificial starvation situation would knock on the door and would penalise the usage of the same
network.

1.3 Network Configuration
The addresses of the nodes that take part actively in the construction of the blockchain are
divided in two categories:

M Main: Addresses that have no correspondent physical server. They function in the same
way as the names of the DNS system, the serve as targets for the stakes placed by the stake
holders.

O Overflow: Addresses that correspond to physical servers, who do the actual mining. These
are the mining nodes.

Stakeholders delegate they voting power to aM address using a specific transaction of staking.
This stake, or vote, is valid until the same owner decides to abort it using a stake undo action.
By staking on aM, the power to vote, expressed in the amount of tokens specified, is delegated
to the pool of servers represented by the M. To be a valid target for staking, a M needs to
assign at least 1 O node to itself. AM can have an unlimited number of O assigned to it. An O
node on the other hand can only be assigned to a singleM at a time.

1.4. TIME SCANNING AND CONSENT ALGORITHM 3

1.4 Time scanning and Consent Algorithm
To be able to explain as clearly as possible the concepts expressed in this section we will utilize
the default values used in the configuration of the blockchain Takamaka.

1.4.1 Slot
It’s the smallest time unit, corresponding to a time period of 30 seconds. For each slot, the
Consensus algorithm chooses a single miner. This is the only one enabled to create a block in
that specific time window.

1.4.2 Epoch
Slot aggregation, in the default configuration 24000 slots correspond to an epoch. In a best case
scenario this will correspond to 24000 blocks being generated.

1.5 Slot Assignment
On each Epoch an evaluation is made to distribute the slots of the next epoch between the mining
nodes. This evaluation is linked to the stake assigned to each of theM they are assigned to. The
evaluation takes place on multiple phases and is triggered on the 2/3 completion of the current
epoch. All the following steps must be strictly deterministic1:

• determine the block with an index number greater than or equal to (slotPerEpoch/3) df2
24000/3 = 8000, because the blocks are numbered starting from 0 the 7999 or the very next
predecessor.

• the seed of this block, concatenated to seeds of an arbitrary but pre-established number
of predecessors is passed to a hashing function. The result will generate a ticket (a bit
sequence).

• an interval of sequences proportional to the stake assigned to each O, according to the stake
of theM it’s assigned to. These intervals will be chained together and produce a space
between [0, totalStake− 1) 3

• for each slot to be assigned we will proceeded by calculating a number of repetitions of the
hash function equal to its index + 1. The obtained number moduled to the total stake will
fall into one of the concatenated intervals of the previous step. The slot will be assigned to
the O "owner" of that interval.

1.6 Evaluation of the weight of a block sequence
In Bitcoin, the number of linked blocks weighed on the difficulty of the hash is the determining
factor in establishing which blockchain to extend. We decided to follow a similar approach in
Takamaka.

1the detailed explanation of the distribution algorithm, goes beyond the aim of this short introduction
2df = refers to default parameters
3Correctly assigned to a main with a respective overflow

4 CHAPTER 1.

The nodes decide on which sequence of blocks to extend using the weight of blocks preceding
them in the chain. The weight of a block is determined by the total stake of the epoch it belongs
to, divided by the number of blocks belonging to that epoch4. The mining nodes always extend
the chain that has the greater weight.

1.7 Decisions on the Purpose
Let’s define the following objects:

TSpE Total Slots per Epoch, df 24000.

Oj
Stake stake assigned to the overflow with index j in an epoch

TStake Total Stake accepted per epoch

Oj
Slots slots assigned by the heuristic to the overflow that has index j

SW eight Weight of a slot as calculated in the previous chapter

Wi
Oj Exact weight that should carry the slot with index i assigned to the overflow of index j

considering its stake5.

N (O) total number of overflows

Wk
h sum of weights of slots from h to k

W51 k
h given an interval of slots [h, k] this value shows 50% + 1 of the maximum weight reachable

in this interval.

WBk
h sum of block weights6 from h to k

Wi
Oj =

TSpE
Oj

Stake

TStake

Oj
Slots

(1.1)

W51k
h = WBk

h

(k − h)

(
k − h

2 + 1
)

(1.2)

The algorithm proposed to decide the finality in Takamaka is based on the sliding windows
concept, similar to that of tcp/ip. Assuming we have a limited network up to 400 nodes7 the
block of index n is defined as final if:

WBn+400
n+1 =

n+400∑
i=n+1

N (O)∑
j=0
Wi

Oj

 (1.3)

4if the epoch is 24000 blocks and the accepted stake is 99000000 TKG the weight of a block will be
99000000/24000 = 4125

5this is necessary to compensate the errors introduced from the heuristic algorithm used to assign the slots
6the Takamaka blockchain allows for empty slots in cases such as when an O does not send a block in the

allotted time window, or when a block contains errors and is discarded.
7that is reached admitting the M addresses, configured correctly, and summing these stakes and admitting

only those that exceed or are at the threshold of 1/400. The techniques used to avoid a stall, when no one reaches
this threshold will not be part of this paper.

1.7. DECISIONS ON THE PURPOSE 5

The sum of the weight of the blocks produced after n in the range (n + 1, n + 400), denoted as,
WBn+400

n+1 , is bigger than or equal to the lower limit of weight for the same interval W51k
h

WBn+400
n+1 ≥W51k

h (1.4)

Otherwise i need to extend the interval [h, k] and move forward making a new evaluation.

6 CHAPTER 1.

2. Path finality
Giovanni Antino, Iris Dimni per AiliA SA

2.1 Definition of path
A Path is any contiguous sequence of blocks, intuitively it is possible to construct a sequence,
which includes all the blocks in the path, starting from the newest to the oldest. Within a Path,
sorting can be established from the following considerations:

• each Block is assigned to a Slot that we will denote by Bslot

• each Block can belong only to one Epoch that we will denote by Bepoch

• in a valid sequence of blocks each Slot can correspond to at most one Block

• empty Slot may exist.

• each Block in a valid sequence is uniquely identified by the value pair (Bepoch,Bslot)

• distance, as the absolute number of Slot from Block Zero, is defined as Absolute Block
Number. The Absolute Block Number of a Block is given by TSpEBepoch + Bslot

From the above, a strict ordering of the blocks can be established using their Absolute Block
Number.

2.1.1 Contiguity of two blocks
Given two distinct blocks with Absolute Block Number k < h bk is contiguous to bh if the
Previous Block Hash of bh is equal to the Single Inclusion Block Hash of bk.

2.1.2 Contiguity of blocks within a Path.
Given the block contiguity relationship, defined in the previous section, we can construct a path
as any set of totally odinate blocks. These sets of blocks define a chain 1.

2.1.3 Recursive definition of Path
In this section we will define the steps required to create a Path.

1The term chain is sometimes defined as a synonym for a totally ordered set, but it is generally used for referring
to a subset of a partially ordered set that is totally ordered for the induced order.

7

https://en.wikipedia.org/wiki/Total_order#Chains
https://en.wikipedia.org/wiki/Total_order#Chains

8 CHAPTER 2.

• P set of paths defined on the blockchain, each Path is associated with an integer.

• |P| Number of Path defined within P (cardinality of P).

• pn n-th Path belonging to P, each Path is characterized by an index and an ordered list
of blocks associated with it. pn = (n, 〈bh, . . . , bk〉)

2.1.3.1 Step 0

I define p0 as the first Path associated with the b0 of the blockchain. p0 = (0, 〈b0〉)

2.1.3.2 Step n

I add bz to the blockchain, proceed to evaluate Path for bz.

• If Previous Block Hash of bz does not match the Single Inclusion Block Hash of a
block in the blockchain bz cannot be linked and therefore evaluated. bz is not assigned to
any Path.

• If Previous Block Hash of bz corresponds to the Single Inclusion Block Hash of a
block in the blockchain bz:

– we obtain bk where Single Inclusion Block Hash of bk = Previous Block Hash
of bz

– if bk does not belong to any Path I stop the procedure

– If bk belongs to a Path, which we will call pk for convenience, and bk is the last
Block in the chain of pk blocks then I add bz as the last Blockz of pk. Es. pn

k =
(k, 〈bi, . . . , bk〉)→ pn+1

k = (k, 〈bi, . . . , bk, bz〉)

– if bk belongs to a Path, which we will call pk for convenience and bk is not the last
Block in the chain of pk blocks then I create a new Path, for convenience I will call
it pz = (|||+ 1, 〈bz〉) where the index will be the current cardinality of the set P+1
and bz will be the only element of the new P.

2.2 Path weight
Applying the definition of path given in 1.6 to a Path we can determine which of its constituent
blocks are final. We now extend the definition of the recursive function 2.1.3 by adding the
evaluation of the weight of the blocks.

To simplify the notation, instead of indicating slots by the pair (Bepoch,Bslot), the equivalent
notation with only Absolute Block Number will be used.

By SW eight(k) I denote weight of slot k in Absolute Block Number notation.

2.2.0.1 Step 0

I define p0 as the first Path associated with the b0 of the blockchain. p0 = (0, 〈b0〉). The block
is also associated a weight value BW eight. the definition of p0 becomes (0, 〈bBW eight

0 〉) which, in
the case of block zero is (0, 〈bSW eight

0 〉). I define B̌ as the set of final blocks where B̌0 = {∅}. I
define

...
B0

0 as the set of nonfinal blocks in the path of b0 and therefore
...
B0

0 = {b0}.

2.3. DEAD BLOCK 9

2.2.0.2 Step n

I add bz to the blockchain, proceed to evaluate Path by bz.

1. If Previous Block Hash of bz does not match the Single Inclusion Block Hash of a
block in the blockchain bz cannot be linked and therefore evaluated. bz is not assigned to
any Path and its weight cannot be determined. This terminates the evaluation.

2. If Previous Block Hash of bz corresponds to the Single Inclusion Block Hash of a
block in the blockchain bz:

(a) I obtain bk where Single Inclusion Block Hash of bk = Previous Block Hash of
bz.

(b) If bk does not belong to any Path I stop the procedure.

(c) If bk belongs to a Path, which we will call pk for convenience, and bk is the last
Block in the chain of pk blocks then I add bz as the last Blockz of pk. Ex.
pn

k = (k, 〈bWBi
0

i , . . . , bWBk
0

k 〉) → pn+1
k = (k, 〈bWBi

0
i , . . . , bWBk

0
k , bWBz

0
z 〉) dove bWBz

0
z =

bWBk
0 +SW eight(z)

k

(d) If bk belongs to a Path, which we will call pk for convenience, and bk is not the
last Block in the chain of pk blocks then I create a new Path, for convenience I
will call it pz = (|P|+ 1, 〈bWBz

0
z 〉) where the index will be the current cardinality of

the set P+1 and bz will be the only element of the new P with calculated weight
bWBz

0
z = bWBk

0 +SW eight(z)
k .

3. I proceed with the reassessment of finality. Given
...
B set of nonfinal blocks included in a

Path. From this set I obtain the subset of blocks
...
Bn

m = (bm, . . . , bn) found in a chain from
bz a b0. ∀bj ∈

...
Bn

m ∧ (z − j ≥ N (O)) I calculate W51 z
j . Given the set of final blocks B̌ if

WBz
j ≥W51 z

j we update B̌ as B̌ = B̌ ∪ bj . We remove bj from
...
B , therefore

...
B =

...
B \ bj .

2.3 Dead Block
Starting from 2.2 I define the dead Block. A dead Block is a Block whose predecessor is
connected to a Block with a final successor. Suppose we have bn belonging to the set of final
blocks. Let us take bk belonging to the chain of blocks 〈b0, . . . , bk, . . . , bn〉. Clearly bk is final
given how the definition of finality is constructed (I cannot have a non-final predecessor of a final
block). Now suppose we connect a block bi to bk. If I allow this behavior and the extension of a
Path connected to bk the Path that includes bi could make bi final. In this way I would end
up with the blockchain 〈b0, . . . , bk, . . . , bi, . . .〉 which does not include bn effectively making bn

nonfinal.

To avoid this paradoxical situation we define dead blocks. Given a non-final block bx. Suppose
that bx has an immediate final predecessor by. Suppose that bp exists and that bp is itself final
and has as its immediate predecessor by. By construction bx and bp are on distinct Path (see 2d)
since each block can have only one predecessor. At this point I declare bx as dead Block and all
non-final blocks that have bx as predecessor in their chain as dead blocks in turn. If a new bp

block has a dead block as its predecessor the block is discarded and cannot join the blockchain.

In this way I prevent the extension of paths and chains that may invalidate the purpose achieved
by a block, in the specific case bn.

	
	Requirements
	Actors involved
	Mining Nodes
	Replicate Nodes
	Holder
	Stake Holder
	Green Token - TKG
	Red Token - TKR

	Network Configuration
	Time scanning and Consent Algorithm
	Slot
	Epoch

	Slot Assignment
	Evaluation of the weight of a block sequence
	Decisions on the Purpose

	
	Definition of path
	Contiguity of two blocks
	Contiguity of blocks within a Path.
	Recursive definition of Path

	Path weight
	Dead Block

